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Under very general conditions, we prove that for classical many-body lattice Hamiltonians in
one dimension (1D) total momentum conservation implies anomalous conductivity in the sense
of the divergence of the the Kubo expression for the coe�cient of thermal conductivity, κ. Our
results provide rigorous con�rmation and explanation of many of the existing \surprising" numerical
studies of anomalous conductivity in 1D classical lattices, including the celebrated Fermi-Pasta-Ulam
problem.

Since the pioneering work of Fermi, Pasta, and Ulam (FPU) revealed the “remarkable little discovery” [1] that even in
a strongly nonlinear one-dimensional (1D) classical lattices recurrences of the initial state prevented the equipartition
of energy and consequent thermalization, the related issues of thermalization, transport, and heat conduction in
1D lattices have been sources of continuing interest (and frustration!) for several generations of physicists. The
complex of questions following from the FPU study involves the interrelations among equipartition of energy (is there
equipartition ? in which modes ?), local thermal equilibrium (does the system reach a well-defined temperature locally
? if so, what is it ?), and transport of energy/heat (does the system obey Fourier’s heat law ? If not, what is the
nature of the abnormal transport ?) In sorting through these questions, it is important to recall that the study of
heat conduction (Fourier’s heat law) is the search for a non-equilibrium steady state in which heat flows across the
system, but the situation is usually analyzed, using the Green-Kubo formalism of linear response [2], in terms of the
correlation functions in the thermal equilibrium (grand canonical) state. A series of reviews spread over nearly two
decades has provided snapshots of the understanding (and confusion) at different stages of this odyssey [3, 4, 5, 6, 7, 8].

Much of the past effort has been devoted to attempts to verify Fourier’s law of heat conduction

〈 ~J〉 = κ∇T, (1)

where in 1D the gradient is replaced by the derivative with respect to x. Here, κ is the transport coefficient of
thermal conductivity. Strictly speaking, κ is well defined only for a system that obeys Fourier’s law and where a
linear temperature gradient is established (for small energy gradients such that relative temperature variation across
the chain is small; in general κ is a function of temperature, of course). In the literature the dependence of κ(L)
on the length L of the chain has also been used to characterize the (degree of) anomalous transport. However, the
definition of κ for an anomalous conductor, where no internal temperature gradient may be established, is ambiguous.
Typically, one defines it in the “global” sense, as κ(L) ≡ κG ≡ JL/∆T , where ∆T is the total temperature difference
between the two thermal baths. However, if the temperature gradient is not constant across the system, one can
define a local κ, κ ≡ κL ≡ J

∇T , where ∇T is the local thermal gradient. In the present article, we will distinguish
between these two definitions and point out the places where failing to make this distinction has caused confusion in
the literature. A very wide range of results have been produced by previous studies of different systems:

• in acoustic harmonic chains, rigorous results [9], establish that no thermal gradient can be formed in the system,
with the result that formally κG ∼ L1, which can be understood heuristically by stability of the linear Fourier
modes and the absence of mode-mode coupling;

• in the “Toda lattice,” an integrable lattice model [10, 3], in which the result κG ∼ L1 can be understood in
terms of stable, uncoupled nonlinear modes, the solitons, which are a consequence of the system’s complete
integrability [7];

• in non-integrable models with smooth potentials, including (i) the FPU system, leading eventually to claim
that chaos was necessary and sufficient for normal conductivity (κG = κL ∼ L0) [8], a claim that has been
countered by convincing numerical evidence for anomalous conductivity in FPU chains ( κL ∼ L0:4 ) [11, 12];
(ii) the diatomic (and hence non-integrable) Toda lattice, where initial numerical results claiming κL ∼ L0 [13]
have recently been refuted by a more systematic study showing κL ∼ L0:4 [14]; and(iii) the “Frenkel-Kontorova
model,” where recent studies have shown that (at least for low temperatures) κL ∼ L0 [15];

• in non-integrable models with hard-core potentials, including (i) the “ding-a-ling” model [16]; and (ii) the
“ding-dong” model [17], both showing convincingly that κL = κG ∼ L0.
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This bewildering array of results has recently been partially clarified in a series of independent but overlapping
studies. The numerical studies of Hu et al. [15] and of Hatano [14] show that overall momentum conservation appears
to a key factor in anomalous transport in 1D lattices. Lepri et al. [18, 19] and Hatano[14] have argued that the
anomalous transport in momentum conserving systems can be understood in terms of low frequency, long-wavelength
“hydrodynamic modes” that exist in typical momentum-conserving systems and that hydrodynamic arguments may
explain the exponents observed in FPU [18, 19] and diatomic Toda lattice [14].

In the present work, we extend and formalize these recent results and resolve finally at least one important aspect
of conductivity in 1D lattices: namely, we present a rigorous proof that in 1D conservation of total momentum implies
anomalous conductivity.

We consider the general class of classical one-dimensional many-body Hamiltonians

H =
N−1∑
n=0

(
1

2mn
p2
n + Vn+1=2(qn+1 − qn)

)
(2)

where Vn+1=2(q) is an arbitrary (generally non-linear) interparticle interaction. Note that the potential, Vn+1=2,
depends only on the differences between two adjacent sites; in particular, there is no “on-site” potential, UOS(qn),
that depends on the individual coordinates. The (finite) system is considered to be defined on a system of length
L = Na with periodic boundary conditions (qL, pL) ≡ (q0, p0), where actual particle positions are xn = na + qn. In
our analysis the masses mn, as well as interparticle potentials Vn+1=2(q), can have arbitrary dependence on the sites n,
though the examples studied in literature to date have mostly had uniform potentials Vn+1=2(q) = V (q) and uniform,
mn = m, or dimerized m2n = m1,m2n+1 = m2, masses. We require only that the Hamiltonian (2) be invariant under
translations qn → qn + b for arbitrary b. This requires UOS(qn) = 0 [15].

Our aim is to estimate κ, the coefficient of thermal conductivity, which is given by the Kubo formula [20]

κ = lim
T→∞

lim
L→∞

β

L

∫
dtgT (t)〈J(t)J〉� . (3)

Here we have written the canonical average of an observable A at inverse temperature β as 〈A〉� =∫
ΠndpndqnA exp(−βH)/

∫
Πndpndqn exp(−βH). The order of limits in Eqn (3) is crucial to the precise definition of

κ. In Eqn (3), J =
∑L−1
n=0 jn is the total heat current, and jn is the heat current density [15], given by

jn = {hn+1=2, hn−1=2} = (4)

=
pn

2mn

(
V ′n+1=2(xn+1 − xn) + V ′n−1=2(xn − xn−1)

)
.

Writing the total Hamiltonian as H =
∑L−1
n=0 hn+1=2, where hn+1=2 is the Hamiltonian density

hn+1=2 =
p2
n+1

4mn+1
+

p2
n

4mn
+ Vn+1=2(qn+1 − qn), (5)

we find that current density given by (4) satisfies the continuity equation

ḣn+1=2 = {H,hn+1=2} = jn+1 − jn. (6)

Here {.} is the usual canonical Poisson bracket.
Our approach will be similar to that used by Mazur [21], with a crucial difference: we will average correlation

functions over a finite rather than infinite time domain, T . We start with an elementary inequality. For an arbitrary
observable X(t) = X({qn(t), pn(t)}), we have∫ ∞

−∞
dtgT (t)〈X(t)X〉� ≥ 0 (7)

where gT (t) is a suitable L2(R) window function of effective width T , which has the following properties:

(i)
∫∞
−∞ dtgT (t) = T .

(ii)
∫∞
−∞ dtg2

T (t) = T .
(iii) g̃(ω) :=

∫∞
−∞ dtgT (t)ei!t > 0 for all ω.
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The natural choice satisfying these conditions is a Gaussian, gT (t) =
√

2 exp(−2π(t/T )2). Using elementary Fourier
analysis, the above inequality (7) is easily proved by rewriting it as∫

dωg̃T (ω)〈SX(ω)〉� ≥ 0 (8)

where SX(ω) = limT→∞
1
T

∣∣∣∫ T0 dtei!tX(t)
∣∣∣2 is the power spectrum of the signal X(t). Obviously,SX(ω) > 0, and

given (iii), the inequality (7,8) is clearly fulfilled. We now write the observable X as X = A+αB, α ∈ R. Optimizing
with respect to the parameter α, we arrive at the Schwartz-like inequality(∫

dtgT (t)〈A(t)A〉�
)(∫

dtgT (t)〈B(t)B〉�
)
≥

≥
(∫

dtgT (t)〈B(t)A〉�
)2

. (9)

The above inequality is of quite general use, and we implement it by taking A ≡ J and B ≡ P , where P =
∑L−1
n=0 pn

is the total momentum. For Hamiltonians of the form (2), P is an integral of motion Ṗ = {H,P} ≡ 0 due to
translational symmetry. Since P (t) = P , the above inequality now reads∫

dtgT (t)〈J(t)J〉� ≥ T
〈JP 〉2�
〈P 2〉�

. (10)

The rhs of Eqn. (10) can be easily evaluated: 〈P 2〉� = L/β, and 〈JP 〉� = β−1
∑L−1
n=0〈V ′(qn+1 − qn)〉� since

〈A({qn})B({pn})〉� = 〈A({qn})〉�〈B({qn})〉� . 〈V ′(qn+1 − qn)〉� is an average force between particles n and n + 1,
i.e. the thermodynamic pressure and should not depend on n. The pressure can be rewritten through the usual
thermodynamic definition

φ ≡ ∂F

∂(La)
=

1
L

L−1∑
n=0

〈V ′n+1=2(xn+1 − xn + a)〉� ,

where exp(−βF ) =
∫

Πndpndqn exp(−βH). Inserting the above and multiplying with β/L, we find that the inequality
reads

β

L

∫
dtgT (t)〈J(t)J〉� ≥ Tφ2. (11)

By implementing the two limits as indicated in (3) we have proved our main result:

Theorem: In momentum conserving systems, if the pressure is non-vanishing in the thermodynamic limit
(limL→∞ φ > 0), then the thermal conductivity diverges and κ→∞.

Therefore, we find anomalous energy transport as a simple consequence of the total momentum conservation. The only
case in which the pressure is expected to vanish at any temperature is when the forces between particles at zero tempera-
ture equilibrium are zero V ′n+1=2(0) = 0, and the interparticle potentials are all even functions Vn+1=2(q) = Vn+1=2(−q).
This is the case for the FPU “β” problem, where Vn+1=2(q) = 1

2q
2+βq4 [12, 18, 19], and there the integrated correlation

function vanishes for more subtle (dynamical) reasons.
Even if the zero temperature equilibrium forces vanish V ′n+1=2(0) = 0, we still have non-vanishing finite temperature

pressure (due to ‘thermal expansion’ of a system confined to a fixed volume La) whenever interparticle potentials are
not even. This is the case for the FPU “α” model, Vn+1=2(q) = 1

2q
2 +αq3, for the modified diatomic Toda lattice [14],

Vn+1=2(q) = exp(−q) + q, and for the diatomic hard-point 1D gas [22, 14] Vn+1=2(q) = {0 if q > −a; =∞ if q ≤ −a}.
For the usual diatomic Toda lattice [14], Vn+1=2 = exp(−q) the pressure is non-vanishing even at zero temperature,
since V ′n+1=2(0) 6= 0.

Given that momentum conservation implies anomalous conductivity, it is natural to ask whether the converse is
true: namely, does anomalous conductivity imply that the model conserves momentum ? Two counterexamples show
that this result is not true. show. First, if one considers a linear chain of optical phonons—so Vn+1=2 ∼ (qn+1 − qn)2
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and UOS ∼ q2
n—one can show [23] by a straightforward extension of the arguments of Ref [9] that this momentum non-

conserving model nonetheless has anomalous transport. Similarly, there is a momentum non-conserving but integrable
model due to Izergin and Korepin [24] that also shows anomalous conductivity [23]. Finally, let us to stress that in
1D lattices the nature of dynamics, whether it be completely integrable, completely chaotic, or mixed, does not affect
our result: if total momentum is conserved and the canonical average of the pressure does not vanish, the transport
is anomalous. We shall address the central issue of the necessary and sufficient conditions for normal transport in a
forthcoming paper [23].
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